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STATISTICAL ANALYSIS OF METEOROID  PENETRATION DATA 

INCLUDING EFFECTS  OF  CUTOFF 

By J. M. Alvarez 
Langley  Research  Center 

SUMMARY 

The two objectives of this  paper  are  to  present a unified  analysis of Explorer 13, 
16, and 23 penetration  data as a concluding  report on the  satellite  series  and  to  interpret 
the  data  in  terms of the  meteoroid  environment.  In  the  analysis it was determined  that 
the  puncture  time  history was an  exponential of the  form  n = N(l - e-hT),  where  n is 
the  number of detectors  punctured  during  time T, N is the  initial  number of detectors, 
and X is a constant.  Meteoroid  showers  were not detected by the  Explorer  penetration 
satellites.  The  data  were  reasonably  consistent, with  the  exception of the  impact  detector 
data, which  had to  be  discarded,  and  the  cadmium  sulfide  cell  data, which were  inconclu- 
sive.  The  error  analysis  indicated that a constant  penetration  rate  can  be  adequately 
defined  from  the first eight or so  detector  penetrations. 

A  variety of meteoroid  models a r e  capable of explaining  the  Explorer  and  Pegasus 
penetration  data.  To  test  the  effects of a lower  limit of particle  size  on  Penetration data, 
a meteoroid  model  having a cutoff was  hypothesized  and fit to  the  penetration  data.  This 
model is given by 

L 

where F(a) is the  flux of particles of radius a or   greater ,  Fo is the  maximum  flux 
(the cutoff f lux )  and is about 7 kmm2  sec-I, a. (the cutoff radius) is about 5 pm,  and  the 
radius at which  the f l u x  from  the  satellite  data  intersects  with  ground-based  meteor  mea- 
surements is 0.9 mm. Cutoff effects  explain  the  difference  in  slope  between  the  Explorer 
and  Pegasus  penetration  results if the  meteoroid  environment  specified  in  the  equations 
above is assumed. 

INTRODUCTION 

The  advent of manned  spacecraft  has  generated  an  urgent  need  for  more knowledge 
in specific  areas of science.  Meteor  science  was  one  such  area when it was  realized  that 



interplanetary  particles  posed a great  potential  threat  to  manned  spacecraft. Many 
experiments  were  performed by probes  and  satellites  to  add  to  the knowledge  obtained 
from  meteor  observations  and  thus  permit a better  definition of the  meteoroid  environ- 
ment.  The  Explorer  penetration  satellites  were  one  such series. 

Explorers 13, 16, and 23 were  used  to  obtain  information of the  near-earth  meteor- 
oid  hazard by exposing  thin  metal  sheets  to  the  meteoroid  environment.  Researchers 
from  Goddard  Space  Flight  Center,  Lewis  Research  Center,  and  Langley  Research  Center 
participated  in  the  satellite  series  to  obtain  the  variety of meteoroid  data  reported  in  ref- 
erences 1 to 10. The two objectives of the  present  paper are to  present a unified  analysis 
of all the  Explorer  penetration  data as a concluding report  on  the  Explorer  penetration 
satell i te  series and  to  interpret  the  data  in  terms of the  meteoroid  environment.  Explorer 
penetration  experiments  are first considered as statistical  sampling  processes.  Mathe- 
matical  descriptions of the  processes  are  presented,  and  the  Explorer  penetration  data 
are  used to  evaluate  certain  statistical  parameters of these  processes. A portion of this 
work  yields  results  applicable  to  penetration  experiments  in  general. 

The  Explorer  data  are  then  viewed  in a different  aspect.  The  Explorer  experiments, 
together with the  Pegasus  experiments, are considered as information  about  the  near- 
earth  meteoroid  environment. A statistical  analysis is presented  for  interpreting  pene- 
tration  measurements  in  terms of the  meteoroid  environment.  A  limit, or cutoff, on the 
smallness of a particle  existing  in  the  solar  system is postulated  to  determine  whether 
cutoff can  explain  the  difference  in  slope  between  the  Explorer  and  Pegasus  penetration 
data.  A  test  case is presented which  shows  that  the  difference  in  slope  can  be  explained 
by considering cutoff effects.  These  effects  have not been  investigated,  although  much 
work  has  been  performed  in  interpreting  penetration  data  (refs. 2 and 11). 

SYMBOLS 

A  detector  area, m2 

AC area  of Langley  capacitor  detectors, m2 

ACdS CdS cell   area,  m2 

Ag,O,Ag,l a rea  of Lewis  grid  detectors, m2 

Ah hole a rea  of CdS cell  detector, m2 

a particle  radius, p m  unless  otherwise  specified 

2 



particle cutoff radius ,   pm 

cumuiative  area-time  product,  m2  sec 

constant  depending on detector  parameters  only 

flux of meteoroids of radius a and  larger,  m-2  sec-1 

upper  limit of meteoroid  flux,  m-2  sec-1 

function  which  defines  the  penetration  equation t/a = f 

inverse of f which is equal  to f-'(t/a,p,,T) 

number of meteoroids  coming  from  the  direction  defined by angles e,+ 
(see  sketch E in  appendix B), sec-1 m-2 sr-1 

probability  density  function  for  random  variable  X 

probability  density  functions  for  normal  velocity,  speed,  and  impact 
angle,  respectively, of penetrating  particle 

Ma) number  density  function of meteoroid  radius 

K constant, K = (v-2)  (a-2/13> p ( T ) p p y  
- U P  

1(T)  number of penetration  events  detected by capacitor  detector  during  time T 

M number of meteoroids  penetrating a detector 

m,m'  number of meteoroids  penetrating CdS cells 

statistical  symbol, E) m!(M - m)! 
MI 

N initial number of sensitive  detectors 

Ng,O,Ng, 1 initial number of sensitive  Lewis  grid  detectors 
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4 7 )  predicted  number of detectors  penetrated  once or  more  during  time 7 

"i actual  number of detectors  penetrated  once or  more  during  time 7i 

Po(M,N) conditional  probability  that  any  one of N detectors  survives M pene- 
trating  particles 

P(M,m)  probability  that CdS cells  have  m  penetrations  on  one  cell  and  M - m  on 

the  other,  P(M,m) = ($($y($"" 
P(M) Poisson  probability of having  M  penetrating  meteoroids, 

PS probability  that  one  cell  survives  M  penetrating  particles, 
p, = P()(M,N>P(M> 

P(N,n,R)  probability  that  n of N cells  are  punctured,  assuming  penetration  rate  R 

P(X 5 x) probability  that  random  variable  X is less  than or  equal  to  the  number x, 
X 

P(X 5 x) = J gx(x')dx' 
0 

probability of cell  puncture  p = 1 - Ps 

conversion  constant  between  Pegasus  aluminum  detector  and  Explorer 
stainless-steel  pressure-cell  detector 

R(t)  meteoroid  penetration  rate  through  thickness t, me2  sec- l  

r(a,v,e,Pp) function of meteoroid  radius,  velocity,  impact  angle,  and  density 

4 7 )  number of cells  surviving at time 7 

T symbol  standing for all target  parameters 

t thickness of detector  material,  pm 

4 



tE thickness of Explorer  detectors 

tP thickness of Pegasus  detectors 

to ,t 1 material  thicknesses  defined by the  penetration  equation to = aoC(T)vo pp , P S  

t l  = aoC(T)vl P 6  pP 

U random  variable  for  normal  velocity  component of penetrating  meteoroids 

U normal  velocity  component of penetrating  meteoroids, u = v  cos 8, km sec-1 

u1 upper  limit of normal  velocity  component of penetrating  meteoroids,  u1 = v1 

V random  variable  for  meteoroid  velocity 

V meteoroid  velocity, km sec- l  

vo ,v 1 lower  and  upper  limits,  respectively, of meteoroid  velocity  distribution 
function 

) function  which  cannot in  general  be  factored  into  product of two 
functions 

z E ( T ~ )  ,zp(Tp) functions  characterizing  Explorer 16 and 23 detector-material  com- 
bination  and  Pegasus  detector-material  combination,  respectively 

a population  index 

P exponent of velocity  in  penetration  equation (eq. (27)) 

Y constant, y = In 

yg,o’yg,l constants  used  in  grid  detector  analysis, %,o 

yg,l = In (, 1 - - N;,JNg” 

6 exponent of meteoroid  density  in  penetration  equation (eq. (27)) 
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constant  used  in  specifying  confidence  level 

meteoroid  impact  angle 

random  variable for meteoroid  radius 

constant , 

penetrating  particle  density,  g 

target  density,  g 
j b-l 

L 

data scatter o r  experimental  variance, oexp 2 = 1 f - + ~ i $ j  
i=l 

N 
theoretical  variance  or  scatter, utheo = 2 P(N,n,R)(n - (n))2 

n= 1 

t ime,  sec 

longitudinal  angle,  see  sketch  E  in  appendix B 

chi-squared  function 

solid  angle  from which meteoroids  are  coming,  see  sketch  E  in  appendix B 

The  symbol ( ) denotes  the  average  value of the  quantity  within  the  brackets. 

EXPERIMENTAL DATA 

Satellite  Descriptions  and  Orbital  Elements 

The  satellites,  Explorers 13,  16, and 23, carried a variety of micrometeoroid 
detectors which are  described  in  detail  in  references 3 to 11. The  following  description 
consists of identifying  the  different  experiments  onboard  the  satellites. 

Explorer 13 was launched  into  an  orbit  having  an initial perigee of 113 km and  an 
initial apogee of 1150 km, on  August 25, 1961, from  the NASA Wallops  Station  and  stayed 
aloft  for 3 days.  Since this satellite  detected no penetrations  on any of its penetration 

detectors,  the only  information it provided was an  upper  limit  on  penetration flux. This 

1 
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satellite  was  useful  in  that  the f l u x  limit  was  used  in  redistributing  the  area with respect 
to  thickness  on  the  subsequent  Explorer  satellites. 

As shown in  figure 1, Explorer 13 carried  beryllium-copper  pressure  cells, 
microphone-type  impact  detectors,  and  cadmium  sulfide (CdS) cells.  Also  onboard  the 
satellite  were  thin  stainless-steel  sheets  with  printed  circuits  underneath  (Lewis  grid- 
type  detectors)  and  melamine  cards wound  with thin  wire  (Goddard  wire  cards).  Refer- 
ence 3 contains a more  detailed  description of the  detectors  and  table 1 lists the  area 
distributions of the  various  detectors  with  their  corresponding  thicknesses and important 
physical  parameters. (See  fig. 2 for sketches of different  detectors.) 

The  Explorer 16 spacecraft  was  launched  on  December 16,  1962, and  provided 
information  for  about 7 months. It w a s  the first of the  satellites  to  collect  extensive  data 
on micrometeoroids.  This  satellite  was  essentially  the  same as Explorer 13 in  that it 
carried  the  same  experiments,  but as previously  mentioned,  the  area-thickness  distribu- 
tion of the  penetration  detectors was changed.  Table 2 presents  the  orbital  elements  and 
the  area  distribution  for  the  Explorer 16 satellite. 

Explorer 23, which was  launched  on  November 6,  1964, was different  in  appearance 
and experiments  onboard  from  the two previous  satellites, as shown in  figure 3. Instead 
of the  wire  card  and  grid-type  detectors, this satellite  carried a newly designed  impact 
transducer  system, two capacitor  detectors,  and  pressure  cells.  Table 3 presents  the 
area  distribution and orbital  elements  for this satellite. It collected  data  for a period of 
more  than 1 year. Note from  the  tables that the  orbital  elements  for  the  three  satellites 
vary  appreciably. 

Drawings of all the  detectors flown on the  Explorer  satellites  are  presented i n  
figure 2. 

Measured  Data 

The  complete  penetration  data  obtained by Explorers 13,  16, and 23 a r e  given  in  the 
following  sections.  All  important  detector  parameters  such as thicknesses,  areas,  and 
momentum  sensitivity  are  given  in  tables 1 to 3. The  results  from all Explorer  detectors 
are  presented  in  tables 4 and 5. 

Pressure  cells.-  Figures 4,  5, and 6 present  time  histories of accumulated  penetra- 
tions  for  the  pressure  cells.  The  curves are theoretical  time  histories which  have  been 
f i t  by least  squares  to  the  data.  The  dashed  lines  represent  the  expected  statistical scat- 

ter Otheo discussed  in  the  section 'Data Analysis." 

Grid  detectors.- Figure 7 presents  the  data  from  the  Lewis  experiment.  The  solid 
curve  again is a least-squares fit to  the  data  and  the  dashed  lines  represent  the  variance 

Otheo. 
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Wire cards.- The  Goddard  wire  card data are presented  in  figure 8. Since only one 
penetration  event  was  recorded on each set of cards, the  theoretical  curve  was  made  to 
go  through  that  one  event  for  each  thickness. 

Impact  detectors.-  The  events  recorded by the  impact  detectors  (figs. 9 and 10) are 
not considered  to be impact  data  in this paper. It is thought that  the  detectors  were  ther- 
mally  sensitive  and  that  most  events  were  caused by thermal effects. A  complete dis- 
cussion of these effects is presented  in a subsequent  section. 

Cadmium  sulfide cells.- The  Explorer 16 cadmium  sulfide cell data (fig. 11) a r e  not 
a histogram  in  the  sense  that  the  abrupt  increases  in  hole area did  not  occur  on  the  dates 
shown. The  plot  actually  shows  the  hole area at the  times when the satellite was  in a 
proper  position  relative  to  the  sun  to  enable a correct  measurement  to  be taken.  The CdS 
cells on Explorer 23 were  ruptured  during  launch. 

Explorer  capacitor  detectors.-  Figure 12 presents  the  data  from  the  capacitors 
onboard  Explorer 23. Only two events  were  recorded by this detector  and  the  theoretical 
curve is a straight  line  in  this case. In the Data  Analysis  section it will  be shown that  the 
straight  line reflects the  fact  that  the  sensitive area of the  capacitors  remains  constant. 
The  dashed  lines  represent  the  expected statistical scatter.  

Pegasus  capacitor  detectors.-  Table 6 presents  the  orbital  elements and  the  data 
obtained  with  the  Pegasus  capacitor  detectors.  The  Pegasus  data are used  later  to con- 
struct a meteoroid  model  and are tabulated  here  for  convenience. 

DATA  ANALYSIS 

This  section  presents  the  analysis  performed  on  the  data.  The  analysis is com- 
posed of two main  parts.  The first part  treats the satellite data as a se t  of statistical 
events and  examines  relations  between  different  detectors.  The  second  part  attempts to 
deduce  information  about  the  meteoroid  environment  from  the  data. 

One-Shot Detectors 

In  experiments which consist of a number of one-shot  detectors  (detectors  such as 
the  pressure  cells,  the  grid-type  detectors, o r  the  wire  cards flown on the  Explorer  pene- 
tration satellites), the  time at which the  ith  cell  was  punctured is known. The  total num- 
ber  of particles which penetrated  the  entire area is not known since only the first particle 
to  penetrate  each  cell is detected.  The  following  statistical  technique  gives  the  time 
history of the  number of punctured cells and is general enough to  make  possible  extensive 
analysis of one-shot  phenomena. 
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Assume  that  there  have  been  n  cells  punctured by M penetrating  meteoroids 
where  obviously M 2 n. Consider  the first of these M particles  and its effect on a 
particular  cell.  The  probability  that  the first particle  penetrates  the  particular  cell is 
1/N where N is the  total  number of cells, all having  the  same area. The  probability 
that a particular  cell is not punctured by that first particle is 1 - -. 1 Hence,  the  prob- 

ability  that  the  cell is not punctured  by M particles is given by (1 - i)M since  the 

only way in which this can  occur is that  none of the  particles  penetrate  that  particular 
cell.  The  probability of the  survival of the  cell is given by 

N 

By approximating M by its average  value (M) , the  expression  for  the  average  number 
of cells  lost is obtained.  The  average  number of cells  penetrated at least  once is given 

where y = In ( 1 - $IN and ( ) denotes  an  average.  Equation (2) is derived  in  appen- 

dix A. The  time  dependence of 

(M) = R(t)AT (3) 

where  R(t) is the  average  penetration  rate,  A is the  exposed  area,  and T is the 
exposure  time. 

The  method of least   squares was then  applied  to  the  problem by defining  the 
quantity 

where j is the  total  number of perforated  cells,  ni is the  actual  number of cells which 
have  been  perforated  during  exposure  time 7i and 
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which is obtained by substituting  equation (3) into  equation (2). The  value of R(t)  chosen 
was  that  value  for which aexp2 was a minimum  and,  therefore,  that  value  R(t) for 
which the following  equation  holds: 

This  procedure  was followed  on all the  penetration  data  from  the  pressure  cells 
and  wire  cards,  and  the  results  obtained are given in  tables 4 and 5 and  illustrated  in 
figure 13. 

The  technique  had  to  be  modified  for  the  grid-detector  data  since all the  detectors 
were not of the  same  size.  In this case,  the  number of cells not surviving is given by 

J 

where Ag,o and  Ag,l are the  respective  detector areas and Ng,O and Ng,l  are  the 
respective  numbers of detectors.  Thus,  equation (7) replaces  equation (5) in  the least- 
squares  analysis  for  the  grid-detector  data. 

Multiple-Event  Detectors 

Multiple-event  detectors are capable of sustaining  more  than one impact or  pene- 
tration  event without the  loss of the  individual  detector.  The  detectors  falling  into  this 
category are the  capacitor  detectors,  the CdS cells, and  the  impact  detectors. 

Capacitor  detectors.-  The  capacitor  detector is assumed  to count all meteoroids 
passing  through  the  outside steel sheet.  Thus  the  number of detections 1 ( ~ )  at time T 

is the  same as the  number of penetrating  particles,  namely, 

" .~ . 

1(T) = R(t)AcT = M 0 
where A, is the  total area of the  capacitor  detectors. Note that  it  is the  reusable 
quality of the  capacitor  detectors which makes the number of detections  equal  to  the num- 
ber of penetrating  particles.  The  value of flux  was  determined by a least-squares fit of 
the  calculated  number of detections  to  the  actual  number of detections as was done  with 
the  pressure cells. 

CdS cells.-  The  objective of the CdS experiment  was  to  obtain  some  idea of the size 
of the  micrometeoroids  penetrating 6 p m  of aluminized  plastic  film.  This  was done by 

10 



monitoring  the  resistance of a cadmium  sulfide  cell  illuminated by sunlight  coming  in 
through  the  holes left by micrometeoroids.  The  data  and a complete  description of this 
experiment are reported  in  reference 7. 

The  analysis  presented  here  attempts  to  deduce  the  size  and  the  number of particles 
which penetrated  the  cadmium  sulfide  cell.  The  following  assumptions  were  made  in  the 
analysis : 

(1) The  particles which penetrated  the  cells are characterized by an  average  size. 

(2) According  to  reference 7, hypervelocity  tests  on this detector  indicated  that  the 
hole  diameter is 1.0 to  1.5  times  greater  than  the  particle  diameter.  The  hole  area is 
assumed  herein  to  be  1.5  times  the  cross-sectional  area of the  particle. 

In  accordance with the  assumptions,  the  total  hole  area Ah caused by M pene- 
trating  particles all of {a) average  radius is 

Ah = 1.5M7r(a) 

and  the  average  penetration  rate is 

R(t) = - M 
ACdS ' 

where ACdS is the  area  exposed  to  the  environment 

(10) 

for  time 7. Since  there  are two 
equations  and  three  unknowns,  unique  values  for  these unknowns cannot  be  obtained.  The 
most  information which can  be  obtained is a relation which summarizes all compatible 
values  for two of the unknowns if  some bound can  be found for  the  other unknown. This 
analysis  will  attempt  to  put  bounds  on  the  number of penetrating  particles by requiring 
that  the  data  obtained  from  each of the two independent  cells  be  consistent  with  one 
another. 

As shown in  figure 11, the  ratio of the  cumulative  hole  areas of one  detector  with 
respect  to  the  other was about  3.4:l  for  an  exposure  time of about 22 days. If all the 
penetrating  particles  make  holes of about  the  same  size  in  the  plastic  film,  the  number of 
particles  penetrating  each  cell  should  be  in  about  the  same  ratio as the  hole  areas.  Since 
the  cells  are  identical,  each  cell  should  detect  approximately  the  same  number of parti- 
cles if  the  number of particles is reasonably  large.  This  statement  cannot  be  made if  
the  number of particles is small,  because  in  that  case, it is very  possible  that  one  detec- 
tor will collect  considerably  more  holes  than  the  other. For example, if the  detectors 
a r e  identical,  the  probability that one  detector  will  have  three  holes  and  the  other six is 
much  greater  than  the  probability that one  detector will have 300 holes  and  the  other 600. 
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The  ratio of the number of particles  detected by the  cells  therefore  implies  something 
about  the  total  number of particles. 

The  probability  that  m  particles  penetrate  one of the two identical  detectors  and 
that M - m  particles  penetrate  the  other  detector is 

The  probability of obtaining a ratio  equal  to or  larger  than 3.4:l  is given by 

P m' 2 3.4(M c 
where  m' is the  integer  closest  to 
the  inequality.  Thus  the  probability 

0.77M and is obtained by solving  the  lower  limit of 
of obtaining  the  present  ratio or one larger is given 

by equation (12). Figure 14 presents  the  value of this  probability as a function of total 
number of penetrating  particles M. It is seen  that M is rather unlikely  to  be  greater 
than 20. 

Table 4 presents  the  relation  between  the  penetration  rate  and  the  particle  radius 
obtained by substituting  the  value  for M from  equation (9) into  equation (10); an  equation 
in   terms of the  product of the  average  particle size and  penetration  rate is thus  obtained. 

Impact  detectors.- ~. -~~ No analysis is given here  for the  impact  detectors  since  they are 
thought  to  produce  spurious  counts as a result of thermal  effects.  The  matter is dis- 
cussed  in  Results  and  Discussion. 

Conversion  Factors 

Tables 4,  5, and 6 give  the  penetration  rates  for  the  various  experiments as func- 
tions of the  detector  thickness or sensitivity. A simple  comparison of ra tes  between  the 
experiments is not  physically  meaningful  since  the  penetration  rates  must  be  given as 
functions of a common  detector  and  material  combination,  This  section will interpret 
all the  data  in  terms of an  equivalent  thickness of a stainless-steel  pressure  cell.  The 
penetration  data  from all the  Explorer  detectors  are shown in  figure 13 in   terms of an 
equivalent  thickness of stainless  steel. 

Conversion of the  data  from  the  Lewis  grid  detectors  and  the  beryllium-copper 
pressure  cells  to  equivalent  stainless-steel  pressure-cell  data  proceeds  very  simply. 
The  grid-type  detector  used  stainless  steel  and  like  the  pressure  cell  was  sensitive  to 
spalling;  therefore, this material-detector  combination is approximately  the  same as a 
pressure  cell  of stainless steel of the  same  thickness.  The  beryllium-copper  pressure 
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cells, on  the  other  hand,  require a conversion  constant  to  compensate  for  the  differences 
in  density of the two materials.  The  equation  used  for  the  conversion  was  the  Fish- 
Summers  penetration  relation  (ref. 12) which has a (&)-'I2 dependence  on  target  den- 
sity. Tables 4 and 5 give  the  equivalent  stainless-steel  pressure-cell  thicknesses for all 
the  detectors  onboard  the  Explorers. 

An accurate  analysis  cannot be given  for  the  Goddard  wire-card  data  since  not 
enough events  were  recorded  to  deduce  the  conversion  constant  empirically  from  the 
penetration  data. However, since a particle  causing a hole of radius  equal  to  the  wire 
diameter would probably  break  the  circuit and since this same  particle would probably 
also  puncture a pressure cell of thickness  equal  to  the  wire  diameter, it was  assumed 
that  copper wire cards  were  equivalent  to  stainless-steel  pressure cells having a thick- 
ness  equal  to  the  wire  diameter.  The  melamine  backing which  tended  to increase  the 
resistance  to  penetration on the  detector  compared with a pressure  cell  was  assumed  to 
be counterbalanced by the lower mass   per  unit area of the  wire sheet which  tended  to 
decrease its penetration  resistance. 

An empirical  conversion  had  to be performed  for  the  stainless-steel  capacitor  data 
from  Explorer 23 since no laboratory  calibrations  between  stainless-steel  capacitors  and 
stainless-steel  pressure  cells  were  available.  The low number of penetrations  precluded 
a direct  evaluation of the  equivalent  thickness of the  capacitor  detector  in  terms of 
stainless-steel   pressure  cells   from the penetration  data.  The  approach  used  to  convert 
the stainless-steel  capacitor  data  to  stainless-steel  pressure-cell  data was  to  use  the 
relation  in  equation (33) for conversion of a Pegasus  aluminum  capacitor  thickness  to  an 
equivalent  stainless-steel  pressure-cell  thickness,  where the numerical  value of the con- 
version  constant q is 0.99. Since  the  Explorer  capacitor  detector  material was stain- 
less steel  instead of aluminum,  the steel capacitor  thickness first had  to  be  converted  to 
an equivalent  aluminum  capacitor  thickness by use of the Fish-Summers  penetration rela- 
tion (ref. 12). Then this aluminum  capacitor  thickness  was  converted  to a stainless-steel 
pressure-cell  thickness by using  equation (33), with the  value of q equal  to 0.99. 

E r r o r  Analysis 

Assuming  that  the  penetrations  were  characterized by a Poisson  distribution,  the 
probability of M penetrations would be 

P(M) = LR(t)Ad exp  ER(t)Ad 
M! 

The  average flux would have a probability of 1 - E (ref. 4) of being  within  the  bounds 
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where x2 is the  chi-squared  distribution  function  and  Bi is the  cumulative  area-time 
product. 

In  order  to  calculate  the  upper  and  lower  limits,  Bi  must  be  computed. It can  be 
computed  directly  from  the  data,  but  will  be  calculated  in  another  manner. By using 
equation (2) for  the  number of cells  penetrated,  an  expression  for  the  number of cells 
surviving at time T may  be  formulated: 

and,  therefore,  the  total  area-time  product is 

where A is the  total  cell  area  and N is the  number of cells.  Substituting  the  value 
for Bi  obtained in  equation (16) into  the  limits (14) yields  the limits 

where ni has  been  approximated by n(Ti). The  upper  and  lower  limits on the  penetra- 
tion  rate  given  in  tables 4, 5, and  6  were  obtained by substituting  the  rate  obtained by the 
least-squares  technique  into  the  limits  in  expression (17) and  picking  the  confidence  coef- 
ficient 1 - E to  be 0.90. 

The  foregoing error  analysis  implicitly  assumes  that  the  penetration  rate is con- 
stant,  and this assumption  was  checked  in  the  following  manner: If the  actual  penetration 
rate were  constant  over  the  experimental  area,  data  scatter would be  expected  since  some 
particles would penetrate  dead  cells.  This  scatter is given by the  variance 

'the0 
- 

(n - (n))'P(N,n,(R)) = P P ( 1  - P j  1'2 
n=O 
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where  (n) = Np as before.  (See  eq. (A?) in  appendix A.) The  dashed  curves  in  fig- 
ures  4, 5, 6, ?, 8, and 12 represent  the  scatter  given by equation  (18),  and it is seen  that 
with  very  few  exceptions,  the  data are within  the  expected  scatter.  However,  equation (18) 
does not represent  the  total  experimental  uncertainty  in  the  number of punctures.  Thus, 
there  were no indications  that  the  penetration  rates were not constant  in  time.  The 
Explorer  penetration  data are shown in  figure 13  along  with  the 90 percent  confidence 
limits  obtained  in this section. 

THE  METEOROID ENVIRONMENT 

The  section 'Data Analysis"  presented all the  data  obtained by the  Explorer satel- 
lites and  the  reduction of the  data  to a form  suitable  for  further  analysis.  This  section 
uses  the  penetration-rate  data  to  deduce  information  about  the  near-earth  meteoroid 
environment.  The  approach  interprets  the  meteoroid  environment  in  terms of damage  to 
metallic  sheets  and  leaves  certain  environmental  parameters  undetermined. 

The  connecting  link  between  the  meteoroid  environment  and  penetration  into  metallic 
sheets is the  threshold  penetration  equation.  The  following  procedure  counts  the  number 
of meteoroids  having a damage  capability  greater  than or  equal  to  the  damage  capability 
defined by the  threshold  penetration  equation.  The  outcome of the  counting  procedure is 
a calculated  penetration  rate as a function of thickness,  with  the  meteoroid-environment 
parameters  included.  These  parameters  are  then  fitted  to  the  experimental  penetration 
data  collected by the  Explorer  and  Pegasus  satellites. 

Interpreting  the  environment  in  terms of damage  to  metallic  sheets  through  the  use 
of a penetration  equation  requires knowledge of the  velocity  and  angular  distributions of 
the  penetrating  particles.  For  the  size of particle  treated  herein, this knowledge is 
unavailable  and  had  to  be  assumed  in  some  plausible  manner.  The  penetration  equation 
is presently  also  uncertain,  especially at velocities  above 20 km/sec.  The  penetration 
relation  finally  chosen  was  the  Fish-Summers  relation  (ref. 12). 

Throughout this section,  the  work  proceeds  from  the  general  case  to  progressively 
particular  cases.  This was done  for  simplicity  since  in  the  particular  cases  the  mathe- 
matical  considerations  tend  to  obscure  the  physics. 

Connection  Between Particle  Size  Distribution  and  Penetration  Rate 

Let  the f l u x  of particles  between  radius a and a + da  be  given by 

d F  = h(a)da (19) 
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If these  particles 
number of particles  R 

impinge  on a unit  surface of material  T  and  thickness t, the 
penetrating this surface is given by 

where gv and  go are probability  density  functions  (assumed  statistically  independent) 

of the  particle  velocity  v  and  impact  angle 8. The  integration is to  be  carried  out  over 
all appropriate  values of the  variables. 

In  order  to f i x  limits on the  integration, a penetration  equation is required.  The 
threshold  penetration  equation is assumed  to  be of the  form 

- = f v COS 8,pp,T) a 
where f is a function, a is the  particle  radius,  and t is the  maximum  thickness 
which  can  be  penetrated by a particle of velocity  v,  impact  angle 8, and  density pp. 
The  dependence  on  material  thickness  parameters is indicated by T. 

Several  investigators of hypervelocity  impact  in  the  past  :(refs. 12 to 16) described 
their  results  in  the  form  given by equation (21).  Note that  penetration  has  been  assumed 
to depend  on  the  normal  component of velocity. ~ 

The  integration  in  equation (20) is usually  carried  out  over all values of the  vari- 
ables.  Thus  the  penetration rate R(t) is usually  given by 

where  v1  and vo a r e  the  upper  and  lower  limits of the  velocity  probability  density 
function.  Since  penetration  has  been  assumed to depend on 
mal  to  the  plate, a simpler way of writing  equation (22) is 

where  u is defined as the  normal  velocity  component (u = 

the  velocity  component  nor- 

du (2 3) 

v cos 8) and  gu(u) is the 
probability  density  function  for this normal  velocity  component.  This  density  function 
can of course  be  constructed  from  the  density  functions  for  impact  angle  and  velocity. 
The  limits of integration  in  equation (23) may  be  represented  graphically as shown in 
sketch A. It is seen  that i f  a particle  has a radius ap and a normal  velocity  up  which 
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Particle 
radius 

a 

0 ;  

Sketch A 

are above  the  curve t = af u,p  ,T , then  the  function apf(up,pp,T) is greater than  the 
threshold  penetration  thickness  t,  and  that  particle  will  penetrate  thickness t. From 
sketch A it is seen  that  the  particles which wil l  penetrate  thickness t are  those  parti- 
cles which have  radii  and  normal  velocities  in the shaded  region  because the function 
af(u,pp,T) is greater than t for  those  particles. 

( P )  

If a lower  limit on particle size is assumed  to  be ao, the  limits of integration  in 
sketch A must  be  modified as shown in  sketch B. 

Particle 
radius 

a 

aO 

t =  

to  be  used  in 4 equation (24) 

I YS (t 5 to) region \ I  

Equation (24) 
to be used  in 
this region 
(t 2 to) 



and  for  the  lower  curve, 

where f'l is the  inverse of the  function f and T refers to  the  material  dependence. 
The first equation is recognized as the  integral  commonly  used  for this problem - it is 
the  same as equation (23) - but  equation (24) is of a different  character. It gives the 
thickness  dependence  for  small  thicknesses  and  describes  the  manner  in which the  pene- 
tration rate approaches its maximum  value as a function of decreasing  thickness.  Equa- 
tion (25) is affected by the  size cutoff, whereas  equation (24) is not. The  transition  curve 
depicts  the  points  where  equations (24) and (25) give  identical  results.  For  thicknesses 
greater than to, equation (24) must be used,  and  for  thicknesses less than to, equa- 
tion (25) must be used. By including a cutoff parameter  in  the  analysis of penetration 
experiments, a particle population  which substantially  agrees with the  zodiacal-light 
analysis of Beard  (ref. 17) can be  obtained. 

Derivation of Penetration  Rate  for a Special  Case 

In  accordance  with  meteor (ref. 18) and  zodiacal-light  results  (ref. l?), the  cumu- 
lative flux for a special  case is given by 

where F(a) is the  cumulative  flux of particles of radius a and greater,  and P ( A  > a) 
is the probability  that  the  particle  radius A is greater  than  the  number a. More. cor- 
rectly, A is the  random  variable  for  particle  radius  and is used  to  denote  the  event that 
the  particle  radius is greater than a. Reference 19 may  be  consulted  for  more  details 
about  random  variables.  The  penetration  equation  assumed is a more  specific  form of 
equation (21)  which has  been  widely  used  in  the  past  to  describe results of hypervelocity 
experiments (refs. 12 to 15). The  equation is given by 

- = C(T)u pp t P 6  
a 

where p and 6 are  material  constants  and  C(T) is a constant  which  contains all the 
material  properties of the  target. 

To obtain  the  penetration  rate given in  equations (24) and (25), the  probability  den- 
sity of the  normal  velocity is required.  The  probability  density  function  for  the normal 
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component of the  impact  velocity  was  obtained by assuming  an  isotropic f lux  in  the  vicin- 
ity of the  earth. Appendix B presents  an  argument  for  obtaining  the  probability  density 
for impact  angle.  This  density is given by the  equation 

The  normal-velocity  probability  density  function is obtained  from  the  velocity  prob- 
ability  density  and  the  impact-angle  density  in  appendix C. The  probability  density  for 
normal  velocity is given by 

where  u is the  normal  velocity (u = v  cos e), gv(v) is the  velocity  probability  density, 
v1 is the  upper  limit of meteoroid  velocities, and vo is the  lower  limit. 

Once  the  function  gu(u)  has  been  computed, all the  quantities  necessary  for  eval- 
uating  equations (24) and (25) have  been  compiled.  The  evaluation of the  integrals  in 
equations (24) and (25) is presented  in  detail  in  appendix D. It was found that  the  integra- 
tion  gave  different  mathematical  forms  for  penetration  rate as a function of thickness. 
The  expressions for penetration  rate  are  given  in  equations (30), (3l) ,  and (32). 

For 0 5 t 5 aoC(T)vo P d  pp , 

R(t) = Fop - Kt2/P) (30) 

where 
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For thicknesses 
simply 

greater  than or equal  to  aoC(T)vl@Pp6 = to, the  penetration rate is 

R(t) = Fo ( T l  OLppu6aOo!  (u"> t'" (32) 

This last expression is the  one  which is usually  used  in  interpreting  penetration  data  and 
is interesting  since it shows  that  the  population  index a! specifies  the  dependence of 
penetration rate on  thickness of material  provided  that  the  material  penetrated is rela- 
tively  thick. 

Cutoff Model 

One  way to  determine  the  strength of cutoff effects is to  try  to fit a flux-mass  model 
like  the  one  given by equation (26) to  the  penetration  data to see whether  such a model  can 
explain  the data. Such a model is characterized by a cutoff and a constant  slope  on  log- 
log  scales. 

The  data  available  for  the  construction of the  meteoroid  model  consist of the 
Explorer 16 and 23 pressure-cell  results  (tables 4 and 5) and  the  Pegasus  capacitor- 
type-detector  measurements  (table 6). 

In  order  to fit a particle f lux  model  from  the  satellite  data,  the  penetration  measure- 
ments  must first be  correlated  since  the  Explorer  and  Pegasus  satellites  used  different 
detectors and  different  materials.  The  assumption  used  here is that  the  Explorer 
stainless-steel  pressure-cell  thickness  and  the  Pegasus  aluminum-capacitor  thickness 
are  related by the  equation 

tE = q tp  (33) 

where  tE  represents  the  Explorer  stainless-steel  pressure-cell  thickness, tp repre- 
sents  the  Pegasus  aluminum-capacitor  thickness,  and  q is a "total"  conversion  constant. 

It should  be  noted  in  passing  that  the  requirements  necessary  for  equation (33) to 
hold are fairly  flexible. If the  penetration  equation is given by 

t = z(T)r  a,v,6,pp 0 (34) 

where  z(T) is a function  depending  only on detector  characteristics  such as detector 
density,  strength,  and so forth,  and r(a,v,6,pp) is a function  depending  only  on  the  par- 
ticle  parameters of size,  velocity,  impact  angle,  and  density,  then  equation (33) holds. 
This  happens  because  the  Explorer  penetration  equation would be  given by 
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tE = ~E(TE)r(a,v,e,Pp) 

and  the  Pegasus  penetration  equation would be 

Also,  the  ratio 

(3 5) 

is a constant  depending  only on the  detectors, if the  detectors are penetrated by the  same 
particles.  The  penetration  flux  expected  on  the  thicknesses  tE  and tp above is the 
same if  they a r e  exposed  to  the  same  environment. Two thicknesses  related  in  the  man- 
ner of equation (37) are said  to  be  equivalent. 

The  penetration  data  used  for  fitting  were  the  Explorer  pressure-cell  data  and  the 
200 p m  and 400 pm  Pegasus  data.  The  data  from  the  thinnest  Pegasus  detectors  were 
not used  because  the  aluminum  alloy  used for these  detectors  was  different  from  the  alloy 
on  the  thicker  detectors. Also, the  thickness of the epoxy backing  on  the  aluminum 
increased  the  resistance of this detector  to  penetration. 

It was assumed  that  the  Pegasus  data  were  in  the  region  where  equation (32) holds, 
and  thus a is the magnitude of slope of the  Pegasus  data  and is given by 

1 

where R p  is the  Pegasus  penetration rate. Since  the  slope  for  the  Explorer  data is 
less  than for the  Pegasus  data,  the  Explorer  data  have  to  be  in  the  region  where  equa- 
tions (30) and (31) hold.  The  values of FO and  a0 are constrained  to  be  consistent 
with  these  data  since  everything else in  the  expression is fixed  once a velocity  probability 
density  and a penetration  equation are chosen. 

Since  the  velocity  probability  density  function is not known for  small  particles, it 
must  be  assumed.  The  guidelines  for  assuming  the  density  function  were  that it approx- 
imate  meteor  velocity  density  functions  and that it be  mathematically  simple.  The 
assumed  density  function is shown in  figure 15  along  with  some  meteor  density  functions 
(refs.  20  and 21) and is given  by 
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The  normal  velocity  probability  density  obtained by using  equation (29) is derived  in 
appendix C and is given by ‘ 

(0 5 u 5 11 km/sec) 7 

The  penetration  equation  used was the  empirical  Fish-Summers  relation  (ref. 12) 
given by 

t - 1.82 
”- a p  

where pt is the  target  density.  This  equation,  obviously a specific  form of equation  (27), 
was  used  because it was  derived  from  penetration  into  material  sheets of finite  thickness 
instead of the  usual  semi-infinite  results.  This  equation  implicitly  assumes a particle 
density of about 2.7 g  cm-3. 

As previously  mentioned  the  values of a0  and Fo were  chosen  to  be  consistent 
with  the  Explorer  penetration  data.  The  particular  values  for Fo and  a0  were 
obtained by requiring  equations (30) and (31) to  give  the  actual  penetration  rates  observed. 
These  constants  were  obtained by trial and e r r o r  and a r e  given in  the following  table 
together  with all the  quantities  used  in  the  equations: 

Fo, mm2 sec- l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.7 x 10-6 

a 0 , p m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

(v-2), (sec/m)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.0 x 10-3 

Q . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 
p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.0 

(,-Up>, (prn1-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.0 x 10-7 

q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . g g  

The  choice of values  for  a0  and Fo determines  the  values for equations (30) to (32) 

provided  that  the  thickness t refers  to  an  Explorer-type  penetration  detector.  Because 
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of this the  expression  cannot  be  expected  to  fit the Pegasus  data  points  for  the two larger 
thicknesses  since  they  have not been  converted  to  Explorer  thicknesses.  To  convert  the 
Pegasus  aluminum  capacitor  thicknesses  to  Explorer  stainless-steel  pressure-cell  thick- 
nesses,  the  value of q  in  equation (33) must  be  determined.  This  value was obtained by 
determining  the stainless-steel pressure-cell  thicknesses  corresponding  to  the  Pegasus 
penetration rates. The  thicknesses  obtained  in this manner are equivalent  thicknesses. 
Knowing the  equivalent  thicknesses  and  the  actual  thicknesses is sufficient  to  calculate 
the  value of q,  which  was  determined as 0.99. 

The  meteoroid  environment  suggested by the  present'investigation  and  other  inves- 
tigations  (refs. 10, 11, 17,  18, and 22) is given in  figure 16. The flux for  large  particles 
was determined  from  meteor  measurements (ref. 18) and  extrapolated  to  the  point  where 
the  curve  intersected with the  extrapolated  curve  from  the  present  investigation. 

RESULTS AND DISCUSSION 

Statistical  Analysis 

One-shot  detectors.-  As  previously  mentioned,  the  results of analyzing all the  one- 
shot  detectors on  the  Explorer 16 and 23 satel l i tes   are  a se t  of penetration  rates with 
their  respective  limits  (tables 4 and 5). The  statistical  analysis  contains a number of 
more  general  results. One such  result is the  expression  for  the  expected  puncture  time 
history given by equation (2). This  equation  clearly  shows  that  the  dependence of cells 
punctured  on  penetrating  particles is an exponential  function. 

Another  general  result is the  manner  in  which  the  predicted  time  history was f i t  to 
the  data. An important  characteristic of the  expressions  developed  and of the  fitting  tech- 
nique is that  the  entire  technique  can  be  used i f  the  penetration rate varies with time. 
This  fact is important  for  meteoroid  penetration  experiments  to  detect  time-varying  pen- 
etration rates, such as a penetration rate measured  in  the  asteroid  belt.  The  penetration 
rate in  that case would be  dependent  on  the  location of the  satellite  and  the  location of the 
trajectory of the satellite; these   a re  a function of elapsed  mission  time. 

Multiple-event  detectors. - Multiple-event  detectors are capable of sustaining  more 
than  one  impact or penetration without the  loss of the  individual  detector.  Impact  detec- 
tors,  cadmium  sulfide  cells,  and  capacitor  detectors fall into  this class. 

- 

Impact  detectors: One of the  objectives of the  Explorer satellite series was the 
correlation of impact-detector  data with penetration-type  data.  This was the  reason  for 
both  types of experiments on one satellite. The  threshold  momentum  levels of the  detec- 
to rs  were fixed so that a correlation of the two types of data would be  possible.  Thus it 
was expected  that  penetration rates and  impact rates would be of the  same  order of 
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magnitude. Such was not the  case,  however,  since  the  impact rates were  generally  much 
higher  than  the  penetration rates (tables  4  and  5),  and in  some  cases  the rates differed by 
several   orders of magnitude. 

There  have  been  doubts  cast  on  the  validity of measurements  obtained by this type 
of detector.  Nilsson (ref. 23) has found impact  detectors  on the OGO satellite& to  be  tem- 
perature  sensitive,  and  the high impact rates obtained by the  Explorer 23 satellite 
prompted Holden and  Beswick (ref. 9, pp. 45-57) to  investigate a possible  temperature 
effect  on  the  impact  detectors  onboard  Explorer 23. Holden  and  Beswick's  comparison of 
percent  time  in  sunlight  with  impact  rate is shown in  figure 10 for  Explorer 23. Figure 9 
presents  the  same  correlation  for  Explorer 16. Both figures show  that when the  satel- 
lites  were  in  sunlight 100 percent of their  orbit,  the  impact  rates  dropped  rather  drasti- 
cally. It should  be  noted  that when the  satellites  were  in  sunlight 100 percent of the  time, 
the  satellite  temperature  was  constant  with  time. 

Probable  causes of the  behavior of the  detector  might  be 

(1) Piezoelectric  elements  can  generate  impact-type  signals  due  to  discontinuities 
in  polarization as a function of temperature  (ref. 24). 

(2) Mechanical  noise  may  also  be  generated by expansion  and  contraction of the 
sounding  boards as a result  temperature  changes. 

All  the  foregoing  phenomena  suggest  that  the  impact  data  obtained by the  Explorer 
satellites  may  in  fact not be  due  solely  to  particle  impacts but  due  also  to  various  types 
of thermally  caused  system  noise.  Because  the  particle  impacts  apparently  cannot  be 
filtered  from  the  thermally  generated  noise,  the  impact  data  from  the  Explorer  satellites 
must  be  discarded. It should  be  noted,  however,  that  this  noise  apparently  depends on the 
threshold  sensitivity of the  system,  and  thus,  the  lowest-sensitivity  impact  detector on 
Explorer 23 may  have  obtained good data. 

CdS cells:  Table  4  presents all compatible  values of the  product of penetration  rate 
and  the  square of the  average  particle  radius  for  particles  penetrating  the  cadmium  sulfide 
detector. Also, statistical  considerations of the  data  imply  that  the  total  number of pen- 
etrating  particles  was  likely less than 20. If the  value of penetration rate obtained  from 
20 penetrations  in 22 days  (5.1 X 10-3 m-2 sec-1) is substituted  into  the  equation  in 
table 4, the  value of the  average  particle  radius  turns  out  to  be  about 16 pm  assuming  that 
the  hole  size is 1.5 times  the  projected  area of the  particle.  The  value  for  the  penetration 
rate is about  3 orders  of magnitude  higher  than  the  .penetration  rate  from  the  penetration 
measurements  for  particles of about  the  same  size.  Thus  the  penetration  meaiurements 
and  the CdS cell  results  seem  to  disagree.  In an analysis of the  same  data (ref. 7), it was 
concluded  that  the CdS cell  results  were  consistent with the f l u x  model  presented by 

24 



Alexander  et al. (ref. 25), which  predicted a great  number (=1000) of penetrations  through 
these  detectors. 

Capacitor  detector:  Although  this  detector  sustained  only two penetrations, it was 
considered a successful  experiment. At the  time of the  flight it was felt that  the  elec- 
trons  in  the Van Allen  belts would be  trapped  in  the  capacitor  dielectric  and  that  the 
capacitor would fire when the  electron  charge  built up  high  enough  to  break down the 
dielectric.  This  effect was thought  capable of causing  false  penetration  events  ranging 
in  the  hundreds.  Reference 9 cites the  capacitor  data as inconclusive  because it was 
impossible  to  determine  whether  the  events  were  caused by meteoroid  penetration or 
radiation  effects.  The  approach  taken  here is to  assume  that  the  events  were  caused by 
meteoroid  penetration  and  then  to  compare  these  measurements  with all the  penetration 
data  to see whether  the  assumption is contradicted. It is seen  in  figure 13 that  the two 
capacitor-detector  events  are  compatible with the  rest of the  penetration  data. 

Error  analysis.-  The  results of the error  analysis,  for  example,  the  penetration- 
rate  measurements,   are given  in  tables 4, 5, and 6 and a r e  shown as boundaries  in  fig- 
ure  13. More  general  results  may  be  obtained by investigating how rapidly  penetration 
rate  goes  to its ultimate  value. 

In  order  to  see how fast the  penetration  rate  converges,  the  value of penetration 
rate  for  the  pressure  cells  given  in table 5 was assumed  to  be the actual  one  and  the 
limits  (expression (17)) were  interpreted  to  mean  that  experimental  measurements  should 
be  within  the  limits  given as a function of n. The resu l t s   a re  shown in  figures 17 and 18. 

This  error  analysis  may  be  used  to  answer  the  question of  how many  punctures or 
events  are  necessary  in  order  to  have a good estimate of penetration  rate.  This is shown 
in  figure 19 as the  values of 

These  functions  give  the  ratio of the  confidence  limits  (expression (17)) to  the  actual  value 
of penetration rate R,  assuming y 1 (large  number of cells)  and  therefore  indicate 
how these limits converge  to  their  ultimate  value. It is seen  that knowledge of penetra- 
tion rate goes  from  an  upper bound at n = 0 to  within a factor of 2 at n = 5. 

Thus it is seen  that  most  information  about a constant  penetration rate is obtained 
from  the first few penetration  events.  The  ratio of the  upper  and  lower  limits of penetra- 
tion  rate  to  the  actual  penetration rate obtained is shown in  figure 19. The  ratio  rapidly 
approaches 1 for about  the first eight or 10 punctures.  The "knee" of the  curves  occurs 
at about five punctures,  and  further  significant  closing of the  confidence  limits  requires 
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many more  punctures. For example,  the  probability is 80 percent  that  the  penetration- 
rate  estimate  obtained  from 30 punctures is between  1.25  and 0.77 times  the  actual  pene- 
tration rate. On the  other  hand,  the  penetration-rate  estimate  for  five  punctures is 
between 1.8 and 0.48 times  the  actual  penetration rate. It is readily  seen  that a sixfold 
increase  in  number of punctures  does not  give a penetration-rate  estimate  that is six 
times as good. It is also  readily  seen  from  the  plot  that  sizable  increases  in  accuracy 
accompany  rather  small  changes  in  the  number of punctures so long as the  number of 
punctures is less  than  about  eight or  10. Thus,  most of the  accuracy of the  penetration 
rate  is obtained  from  the first eight o r  10 punctures,  and  therefore,  the  minimum  number 
of punctures  yielding a "good" penetration-rate  estimate is about  eight or 10. 

The  penetration  data  failed  to  show  the  presence of shower  effects  in two ways: 

1. The  scatter  from  the  expected  or  mean  number of cells not surviving is with  very 
few  exceptions less  than  the  average  mathematical scatter Otheo expected  from  mete- 
oroids  puncturing  dead  cells. 

2. A convincing  simultaneous  increase  in  penetration  rates  for two or more  detec- 
tors or detector  thicknesses  was  not  observed. 

Thus, it was  concluded  that  the  shower  component of the  meteoroid  environment 
could not be  distinguished  from  the  sporadic  component. 

Penetration  Data  and  the  Meteoroid  Environment 

Equations  (30), (3 l), and (32) clearly show that a curved  line  for  penetration  rate 
against  thickness  can  be  expected  on  log-log  scales  even though  the flux as a function of 
particle  radius is a straight  line.  Sketch C illustrates  the  situation. 
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Sketch C 
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The  fitting of the  penetration  data  to a distribution  function of the  zodiacal-light 
type  has  given a simple  explanation  for  the  difference  in  slope  between  the  Explorer  and 
Pegasus  data.  The  explanation is that  the  slope  change is due  to cutoff effects.  The 
model  obtained by fitting  the  penetration  data  to a meteoroid  model  with a cutoff is shown 
in  figure 16 along  with  other  meteoroid  models  for  comparison.  There are, of course, 
other  explanations  for  the  slope  difference. 

One possible  explanation  for the slope  differences  between  Pegasus and Explorer 
data is that  the  cumulative  flux as a function of thickness is curved  on  log-log  scales. 
As  mentioned  previously,  this  possibility was investigated by Naumann  (ref. 11) and 
Alvarez  (ref. 10). Each  investigator  fitted a curved  cumulative flux function  to  the 
Explorer  and  Pegasus  data  and  each found that his respective  model  predicted a cutoff. 
Both cutoff predictions  were  close enough  to  the data so that cutoff effects  were  to  be 
expected. Had cutoff effects  been  incorporated  in  the  functions,  the  flux  curve would have 
been  closer  to a straight  line.  These  investigators  did not t ry  all functions  which  produce 
a curved  cumulative  flux  function,  and it is also  possible  that  the  flux  function  looks as 
depicted  in  sketch D. 

Other  possible 
population  functions 

log  flux .-Naumann  (ref. 11) and 
Alvarez  (ref. 10) type 
predictions 

L .  . ._ ". " 

log  particle  radius 

Sketch D 

The  flux  function  can, of course,  have  just  about any shape  provided  that  the  cumulative 
flux  never  decreases  with  decreasing  radius. 

Another  explanation  for  the  slope  difference is that  the  penetration  equation is not 
of the  form  given by equation (21). For example, if the  penetration  equation is nonlinear 
and is given by 
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(43) 

where  T  again  refers  to  target  parameters  and  w is a function,  there is in  general no 
reason  to  expect  the Pegasus and  Explorer  data  to  define  the  same  slope  even if the  flux 
function is a straight  line. One way of avoiding  difficulties  like this is to  calibrate  the 
detector by determinibg  the  mass or s ize  of the  particle  required  to  penetrate it at mete- 
oroid  velocities.  The  penetration  rate  through  the  material is then  equated  to  the f l u x  
corresponding  to  that  mass.  In  order  for  the  calibration  procedure  to  yield  valid  results, 
the  detectors  in  space  have  to  be  thick enough so that  there are no cutoff effects.  There 
is at present no way to  determine  whether  the  particles  penetrating  the  Explorer  detectors 
a r e  far enough  away from cutoff to  permit a valid  calibration. 

The  foregoing  remarks show  the  need  for  an  experiment  to  determine cutoff.  Such 
an  experiment  does not require  much  area;  for  example, a penetration  detector a few 
micrometers  thick  with  an area of about 0 .5  m2 would suffice  to  test  the  validity of cut- 
off models  like  the  present  one. 

Since  experiments  on  small  thicknesses  give  little  information  on  the  form of the 
flux  function  and  those  on  large  thicknesses  do, it becomes  obvious  that  another  pene- 
tration  detector  thicker  than  the  Pegasus  detectors  might  indicate  the  manner  in which 
penetration  experiments  and  meteor  measurements  are  tied  together. Such an  experi- 
ment would surely  be  indicative of the  rate of change of slope, if  any. It should  be  noted, 
however,  that i f  cutoff is determined  experimentally  to  be  very  much  higher  than  about 
7 x 10-6 m-2 sec-1 - a doubtful  possibility  since  the  Explorer  slopes  are so  flat - then 
Explorer  and  Pegasus  measurements would indeed  imply  that  the  exponent Q defined  in 
equation (38) is not constant. < 

CONCLUDING  REMARKS 

A probability  analysis of the  one-shot  detectors  onboard  the  Explorer  13,  16,  and 
23 satellites  showed  that  the  puncture  time  history  could  be  adequately  represented by an 
exponential of the  form  n = N ( 1 - FAT) where  n is the  number of cells  punctured 
during  exposure  time T, N is the initial number of detectors,  and X is a constant. 
This  exponential  expression  resulted  from  the  loss of detectors  with  time. No unexpected 
deviation  from this formula  was  noted  in  the  data,  thus, a constant  penetration  rate  was 
indicated.  Shower  effects  could  not  be  detected  in  the  data.  The  technique  used  to  deter- 
mine  the  penetration rate is also  flexible enough  to  be  used when the  penetration  rate is 
time  dependent  rather  than  constant  with  time. 

The  meteoroid  data  from  Explorers 13, 16,  and 23 were  analyzed  statistically  and 
were found to  show a good degree of consistency  with  the  exception of the  data  from  the 



piezoelectric  impact  detector  and  the  cadmium  sulfide  cell.  The  impact-detector  data 
were  probably not due  solely  to  meteoroid  impacts  but also to  temperature  effects both 
on  the  piezoelectric  crystal  and  on  the  detector  structure.  Because of this,  the  impact 
data  were not  included in  the  meteoroid analysis. The  cadmium  sulfide  cell  data  tended 
to  disagree  with  the  penetration data and,  furthermore,  seemed  to  exhibit a degree of 
self-inconsistency if  the  number of penetrating  particles was assumed  to  be  large.  As a 
result,  the  analysis of the CdS cell data was  termed  inconclusive. 

Analysis of the  convergence rate of penetration  rate as a function of number of 
detections  indicated  that  most knowledge is obtained by the first eight or so detections. 
The  convergence of constant  flux after eight  detections  becomes a slowly  varying  function 
of number of detections. 

The  penetration  data  from  both  the  Explorer  and  Pegasus  satellite  series  were 
examined  and it was found  that a variety of flux-mass  models  can  explain  these  data.  A 
model of the  environment of the  form  used  in  zodiacal-light  work was hypothesized  and 
fit to  the  data as a test  of the  strength of cutoff effects.  The  model  was found capable of 
accounting  for  the  penetration  data  obtained  thus far and,  furthermore,  seems  also  to 
agree with zodiacal-light  results.  The  model  obtained  for  small  particles is given by 

F(a) = 

c 
where F(a) is the  flux of particles  having  radius a or larger,  Fo is the  maximum 
flux  observable  and  equal  to  about 7 km-2 sec-1,  and  the  cutoff  radius  a0 is about 5 pm. 
The  radius at which  the  flux  from  the  satellite  data  intersects with results  from  ground- 
based  meteor  measurements is 0.9 mm. 

The  analysis  performed  indicates  that  the  parameter  most  urgently  needed now is 
the cutoff flux Fo. An empirical  value  for  the cutoff would indicate  the  shape of the f l u x  
as a function of particle  dimensions. An experiment  such as this does not  need a large 
exposed area. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., November 24, 1969. 
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APPENDIX  A 

DERIVATION OF' TIME HISTORY OF PUNCTURED  CELLS 

The  probability  obtained  in  equation (1) is a conditional  probability  since it assumes 
that M particles  have  penetrated  the  cells.  Then, a suitable  value for M must  be 
obtained  in  the  derivation of the  time  history of punctured  cells. If the  probability of 
obtaining M penetrations  were known, the  probability of survival of the  cell would be 
given by 

where Ps is the  survival  probability, Po is the  conditional  probability  that  any  one 
cell  will  survive M penetrating  meteoroids,  and P(M) is the  probability of M pene- 
trations. An average  value for PS would next  be  obtained as follows: 

where ( ) indicates an average  value. If P(M) were known, the  average  value of P, 

could  be  obtained,  but in  reality P(M) is unknown, and  an  alternate  approach  must  be 
chosen.  The  approach  chosen  here is simply  that  an  average  value  such as that  described 
by equation (A2) yields a number  close  to Po((M) ,N) and  the  approximation  used  herein 
is that 

= exp(- + 3 
-N 

where y = ln(l - i) . Note that  the  survival  probability is a function of the  average 

number of penetrating  particles  per  cell - (M) and a constant y (which is close  to 1) 
N 

provided  that  the initial number of one-shot  detectors is reasonably  large. 
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APPENDIX A 

The  probability  that  the  detector  was  punctured at least  once is therefore 

Since  the  detector was picked qt random,  equation (A4) is true of any  detector  and 
hence  the  probability  that  n  out of N cells  will  be  penetrated is given by the  binomial 
distribution 

where 

and  p is given by equation (A4). 

The  average  number of cells 

- N 

(') = n!(N - n)! 
N! 

penetrated is given by 
7 

Thus  the  expected  time  history  has  the  form of an  exponential. 
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APPENDIX B 

IMPACT-ANGLE  PROBABILITY  DENSITY FUNCTION 

The  number of particles  per  second  passing  through  an  elemental area dA and 
coming  from  the  solid  angle dS2 (in steradians) is given by 

where G(B,+) is the  number of particles  sec-1  m-2 sr-1 coming  from  direction e,+ 
as is shown in  sketch  E. 

Z 

Sketch E 

The  direction of the  normal  to dA also  defines  the Z-axis. 

The f lux  is given by 

and  the  assumption of isotropic  flux  implies  that G(8,+) is a constant.  The  probability 
density  was  obtained by dividing  the  flux by G(8,+)  and  normalizing  over a hemisphere. 
Therefore,  the  impact-angle  probability  density  function is given by 

go( e) = 2 sin e cos e = -2 COS e - COS e d 
de 
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APPENDIX  C 

NORMAL-VELOCITY  PROBABILITY DENSITY FUNCTION 

The  normal-velocity  probability  density  function  was  obtained  from  the  velocity 
probability  density  and  the  impact-angle  density, as shown in this appendix.  The  prob- 
ability  that  the  normal  velocity (u = v  cos e) is equal  to or l e s s  than  u is given by 
P(U 5 u),  which is the  probability  that  the  normal  velocity  random  variable U is equal 
to or less  than  the  number u. This  probability  requires  that U be  in  the  shaded  por- 
tion of sketch F: 

""""" 

"I 
1 
I u = v COS e 

COS e I 

VO 
" 

Particle  velocity v V 1  

Sketch F 

The  expression  for  this  probability is 

P(U 5 u) = { "  

The  density  function  for  u,  where  u = v  cos 8,  is obtained by differentiating  the  prob- 
ability  with  respect  to  u  and is given  by 
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APPENDIX  C 

gu(u) = - P(U 5 u) = d 
du 
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APPENDIX  D 

RELATION  BETWEEN  PENETRATION  FLUX AND PROBABILITY  DENSITY FUNCTIONS 

In  performing  the  integrations  in  equations (24) and (25), it was found necessary  to 
segment  the  regions of integration since these  different  regions  give  different forms to 
the  penetration rate. Sketch G illustrates  the  three  thickness  ranges  where  the  penetra- 
tion rate has  radically  different  dependences  on  thickness. 

Particle 
radius 

a 

-For all particles  in 4 
cross-hatched  region, 

0 - -  
I 1 

u = vo u = v1 

Particle  normal  velocity  u 

Sketch G 

It will be  shown  that  for  thicknesses  less  than to, the penetration  rate  varies as 

Fo(l - Kt2/p), and  thus as t goes  to  zero,  the  penetration  rate  goes  to FO as expected. 

For thicknesses  greater  than t l  (particles  in  region In), the  penetration  rate  will  be 
shown to  vary as t-@, also as expected. ’ Thicknesses  in  the  range  between t l  and to 
a r e   i n  a transition  region  and  the  penetration  rate is not easily  expressible as a function 
of thickness. 

The  particles  in  the  cross-hatched  area  starting  in  region I are  those  particles  for 
which the  normal  velocities  u  and radii a are  such  that  C(T)auPpppb 2 t and  thus 
those  particles  capable of penetrating  thickness t provided t 5 to. Thus  in  region I 
where 0 5 t 5 aOC(T)vo@ppb = to, 
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Substituting  equation (D2) in  place of the  probability  distribution  in  equation (Dl) gives 

The  number  density  may  be  expressed as 

by differentiating  equation (26) where  gA(a) is the  probability  density  for  particle  size 

and is defined as -gA(a) = - P(A > a). Thus  equation (D3) may now be  expressed as d 
da 

The  asymptotic  dependence  on  thickness  for  very  small  thicknesses is therefore 

R(t) = Fo (1 - Kt2/$ 
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APPENDIX D 

Sketch H illustrates  the  particles  having  characteristics  capable of allowing  them 
to  penetrate  thicknesses  between to and tl. 

Particle 
radius 

a 

V u = vo u = v1 

Particle  normal  velocity u 

Sketch H 

Thus  in  region 11 where  the  limits  on t a r e  

the  penetration  rate is given by 

The  particles  in  region 111 are  those  particles for which the radii and  normal  veloc- 
ity  components  are  such  that  aC(T)uPpp6 2 t and  thus  those  particles  which  will  pene- 

trate thickness t. The  penetration  rate  in  region 111 is given by 
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TABLE 1.- EXPLORER  13  DETECTOR  PROPERTIES AND ORBITAL  ELEMENTS 

Detector 

Langley pressure 
cells 

~ 

Lewis grid 
detectors 

Goddard wire 
cards 

Langley  impact 
detectors 

Goddard CdS 
cells 

-L 

date,  August  25,  1961.  Initial  orbital  elements: 
apogee, 1150 km; perigee, 113 km;  inclination, 37.7O- 
period, 97 min 1 

1 p m  1 dyne-sec 1 cm2 1 Of 1 detectors 
Thickness,  Sensitivity, detector, Area  per  Number  Total initial 

Material 

Annealed  beryllium- 
copper  throughout; 
density, 8.23  g  cm-3 ~ 51 

I 

i \ 40 3940 

I I I 20 
i 1970 I 

i 64 I 

\' i 20 1970 I 127 \ I 
20 1970 

, 
Stainless  steel,  type 1 76 1 1 58.1 j 50 2905 

! 

I 304,  throughout; 1 152 i 

density, 7.83  g  cmm3 
' 58.1 ~ 10 581 ~ 

I i I 

I 
7. r"---i-i 

Copper  wire wound on I a51 44 
l4 I 616 

melamine  card 

Lead  zirconate 

16 j 1408 ~ 

88 a76 

2 I 1420 , 709 0.01 I 

titanate  piezo- 

Aluminized  plastic 40 

2 1420 709 1.0 electric  element 
20 1 1970 98.5 .1 

I 

aWire  diameter. 
bThickness of aluminized  plastic  film. 



TABLE 2.- EXPLORER 16 DETECTOR PROPERTIES AND ORBITAL ELEMENTS 

Detector 

Langley pressure 
cells 

Lewis  grid 
detectors 

Goddard  wire 
cards 

Langley  impact 
detectors 

Goddard CdS 
cell 

date,  December 16, 1962. Initial orbital 
apogee, 1180 km; perigee, 750 km; inclination, 52O; 
period, 104 min 

Material Thickness, 
Pm 

Annealed  beryllium- 
copper  throughout; 
density, 8.23 g  cm-3 

Stainless steel, type 
304, throughout; 
density, 7.83 g  cm-3 

Copper  wire wound on 
melamine  card 

Lead  zirconate 
titanate  piezo- 
electric  element 

Aluminized  plastic 
film 

25 
51  

12 7 

25 
25 
76 
76 

152 

a51 
a76 

b6 

aWire diameter. 
bThickness of aluminized  plastic  film. 

dyne-brc~I deteOcftars 
Sensitivity, detector, area, 

cm2 

Area  per  Number Total initial 

98.5 

I 
116 
58.1 

116 
58.1 
58.1 

44 

~ 88 

100 

1970 20 
3940 40 
98 50 

8 928 
8 464 
8 928 

15 
232 4 
8  72 

14  6 16 
16  1408 

0.1 
.5 

1.0 

709 
98.5 

70 9 

2 

1420 2 
19 70 20 
1420 

1 2 0 1  2 1  40 

2 



TABLE 3.- EXPLORER 23 DETECTOR  PROPERTIES AND ORBITAL ELEMENTS 

[Launch date, November  6, 1964. Orbital  elements4 
I apogee, 1000 km; perigee, 458 km; inclination, I 
I 52O; period, 99 min - i 

Detector  Material 

Langley pressure 
302,  throughout; cells 

Stainless  steel, type 

density, 7.83 g  cm-3 

Thickness, 
I-lm 

25 
51 

Sensitivity, 
dyne-sec 

Langley  capaci- Stainless  steel, type 25 
tor detector 302; density, 

7.83 g cm-3 

Area  per 
of detector, 

Number 

cm2  detectors 

Total initial 
area, 
cm2 

6 895 
13 790 

363 2 72 6 

Langley impact  Lead  zirconate  3 x 10-2 60  24 1 440 
-~ 

detectors  titanate  piezo-  8 x 10-1 
electric  element 12 

Goddard CdS Aluminized plastic “6  20 2 40 
cells  film 

aThickness of aluminized  plastic  film. 



TABLE 4.- EXPLORER 16  RESULTS 

(a) Penetration  detectors 

Thickness of Total Penetration rate, m-2 sec-l Unshielded  penetration 
Thickness,  equivalent number rate  limits, m-2 sec-1 

cell,  pm events Upper  Lower 
Detector 

Pm  steel   pressure Of Earth  shielded  Unshielded 
" 

Langley pressure 3.9 x 5.2 x 6.6 x 10-6 3.9 x 10-6 ' 
cells 2.0 x 2.7 x 10-6 4.4 x 1.4 x 10-6 

12 7 0 1.2 x 10-6 

Lewis  grid 25  6 4.7 X 10-6  6.3 X 10-6 1.2 X 10-5  3.4 X 10-6 I 3.3 X 10-7 detectors 76 1 

8.7 X 10-7  1.2 X loe6 1 3.0 X 152  152 0 1 1.6 X 10-5 0 

Goddard wire a5 1  1 8.8 X 10-7 
3.0 X 10-8 2.8 X 10-6 5.8 X 10-7 cards a76 75 1 4.3 X 10-7 
6.2 X loW8 5.7 X 10-6 1.2 X "} Assumed 

I 

Goddard CdS  b6 
cells I 

awlre  diameter. 
bThickness of aluminized  plastic  film. 

(b)  Langley  impact  detectors 

Sensitivity, Impact  rate, m-2 sec-1 

dyne-sec Earth  shielded , Unshielded 

0.1 
4.0 X 10-3  3 X 10-3  .5 
1.3 x 10-2  10-2 i 1.0 2.0 X 10-3 1.5 X 10-3 



TABLE 5.- EXPLORER 23  RESULTS 

(a) Penetration  detectors 

Langley  pressure  25 
51 

Thickness of 
equivalent 

steel p res su re  
cell, pm  events  

25 
51 74 2.5 x 10-6 

"I 

Langley  capaci-  25 43 (Calculated)  2 8.8 x 10-7 
tor  detector I 

~~ ~ _. 

Goddard  CdS "6 Rupture of plastic  film  during  take-off  rendered  CdS  cells  inoperative 
cells 

I 

"Thickness of aluminized  plastic  film. 

(b) Langley  impact  detectors 

Sensitivity, Impact  rate,  m-2 sec-1  

4.8 X 10-4 7.0 X 10-4 
12 4.4 X 10-7 6.4 X 10-7 



TABLE 6.- PEGASUS  ORBITAL ELEMENTS AND RESULTS 

(a) Orbital  elements 

rr- Launch date 

Pegasus 3 July 30,  1965 

I I 

744  496  31.8 1 1  
748  506 31.8  97 

540  52 1 28.9 95 

(b) Results 

Aluminum Equivalent steel 
capacitor 

thickness,  thickness, 
pressure-ce.11 

I.lm I-lm 

Unshielded Number 

m-2 sec-l events rate, of penetration 

Penetration  rate  limits 
(90% confidence), 

m-2 sec-1 

r v E i  3.16 x 10-6 i 3.38 x 10-6 i 2.94 x 10-6 I 
I 400 1 400 1 201 1 8.17 x I 9.15 x I 7.19 x 1 



Impact CdS c e l l  
t r a n d u c e r s  

Be-Cu 
p r e s s u r e   c e l l s  

It 

ewi s pr  i d- 
/ t y p e   d e t e c t o r s  

Goddard 
w i r e   c a r d s  

Figure 1.- Photograph of Explorer 13. L-61-2274.1 
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Stainless-steel 
test  material 

Section A-A 

2.46 

(a) Langley pressure-cell detector (Explorers 

Figure 2.- Sketches of detect01 

.i 

13,  16, and 23). 

's on Explorers 13, 16, and 23. (Al l  

on inside 8 
p a i n t e d  b l a c k  
on o u t s i d e  < T h e r m i s t o r  

(b) Gcddard CdS cell (Explorers 13 and 16). 

dimensions  are in centimeters  unless labeled otherwise.) 
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rr 
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1.52 p m  th ick   go ld   g r id  

813 pm thick  si l icone  rubber 

panels 
72 -7 

11' 30' 

I 
I i 

26.35 

I I LO. 13 thick plate 

(c) Lewis grid  detector  (Explorers 13 and 16). (d)  Langley  impact  detector  (Explorer 23). 

Figure 2.- Continued. 



I- 17.78 1 
0.081-thick 
melamine  laminate 

\ 100 n 
0.0051 o r  0.0076diamster  enameled 
copper w i r e  winding 

thermistor 

Copper  terminal 

(e) Goddard wire  card detector  (Explorers 13 and 16). 

1 
1 -  ~ 29.03 

I I I A Mountina  frame 

LThermistor 

Aluminized  plastic 
Cadmium  sulfide cell 

(f) Goddard CdS cell  (Explorer 23). 

Figure 2.- Continued. 
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Section A - A  
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.~ .~ 

(g) Langley impact detector  (Explorers 13 and 16). 

Fiber-glass mounting 
board 

fl  

Thermistor 

" 

- 
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-. 

J 

__ 

t- i 

0.63 open foam 7_ 

~ Printed  circuit 

(h) Langley capacitor detector (Explorer 23). 

Figure 2.- Concluded. 
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Figure 3.- Photograph of Explorer 23. L-64-10,894.1 
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Days in o r b i t  

Figure 4.- Explorer 16 beryllium-copper  pressure-cell data. 
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Days i n  o r b i t  

Figure 6.- Explorer 23 stainless-steel pressure-cell data. Detector  thickness, 50 pm. 
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Figure 7.- Explorer 16 Lewis (stainless-steel) grid-type  detector data. 
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Figure 8.- Explorer 16 Gcddard copper wire  card data. 
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Figure 9.- Explorer 16 impact  detector data. The  high-sensitivity-system data are  not  shown because that system failed  (ref. 5). 
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Figure 10.- Explorer 23 impact  detector data (ref. 9). 
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Figure 11.- Explorer 16 cadmium  sulfide  cell data (ref. 7). 
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Figure 12.- Explorer 23 capacitor  detector data. 
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Figure 13.- Comparison of satellite data with proposed model. 
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Figure 14.- Results of cadmium sulfide cel l  data analysis (eq. (12)). 
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Figure 15.- Velocity  probability  density  functions. 
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Figure 16.- Comparison of meteoroid models. 
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Figure 17.- Comparison of actual  convergence  with  convergence expected from  Poisson  statistics  for  the 25-pm thick detector on  Explorer 23. 
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Figure 18.- Comparison of actual  convergence  with  convergence expected from Poisson statistics for the 5-pm thick detector on  Explorer 23. 
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